

## Technical Strategies to operate minor and medium irrigation schemes towards improving groundwater system: Vavuniya, Sri Lanka

**Problem statement:** With increase in abstraction of groundwater resources due to rise in population, the pressure on groundwater resources is increasing. This has led to issues like declining water table and waterlogging.

**Intervention:** A regional aquifer simulation model was developed for a restricted catchment: 185.23 km<sup>2</sup> in Vavuniya district, Sri Lanka. This was used to find out operational policy favouring groundwater conservation. It found:

- Case 1: Foregoing cultivation by 25-35% for two consecutive seasons reduced water table loss by 45-65% in 80% of the catchment area.
- Case 2: Peripheral boundary treatment to reduce permeability by 35-45% lead to rise in water table by 0.457-0.838 m in areas closer to treated boundary during recharging season.
- Case 3: Combining 1&2 i.e. peripheral reduction in permeability by 35-45% and foregoing cultivation by 45-55% lead to increase in water table by 1.067 1.448 m during discharge season. Similar trend was observed during recharge season but to lesser extent. Overall, 60-70% of loss in water table was reduced between two seasons in 95% of the catchment area.

**Envisaged impact:** The gain in water table would reduce the cost of energy (fuel/ electricity). This shall increase the degree of economic cultivation per unit irrigation water, thereby increasing economic crop yield. It would also indirectly contribute to GDP and GNP.

(Reference: Sivakumar, 2013; Conjunctive Use of Surface and Groundwater to Improve Food Productivity in Vavuniya District in the Dry Zone Area)